

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of Technology: Geo-Information Technology, Bachelor of Human Resources Management, Bachelor of Marketing, Bachelor of Transport Management, Bachelor of Business Administration, Bachelor of Agricultural Management, Bachelor of Horticulture

QUALIFICATION CODE:

07BGIT,07BHRM,07BMAR,07BBAD,27BAGR,07BTRM

NQF LEVEL: 5

COURSE NAME: INTRODUCTION TO MATHEMATICS
(BUSINESS AND MANAGEMENT)

COURSE CODE: ITM111S

SESSION: NOVEMBER 2019 PAPER: THEORY

DURATION: 3 HOURS MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER EXAMINERS Ms A. SAKARIA, Ms S.Mwewa, Mr B. Obabueki

MODERATOR: Mr G. TAPEDZESA

INSTRUCTIONS

- 1. Answer ALL the questions in the booklet provided.
- 2. Show clearly all the steps used in the calculations.
- 3. Marks will not be awarded for answers obtained without showing the necessary steps leading to them (the answers).
- 4. All written work must be done in blue or black ink and sketches must be done in pencil.
- 5. You may not start to read the questions printed on the subsequent pages of this question paper until instructed that you may do so by the invigilator.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

This question paper consists of 5 pages (including this cover page)

SECTION A (Multiple choice)

Write down the letter corresponding to the best option for each question in the answer booklet/sheet provided.

QUESTION 1 [30 Marks]

1.1 An amount of N\$20009.00 can be expressed in standard form as:

[3]

A.
$$N$2.0 \times 10^5$$

C.
$$N$2.00009 \times 10^{-5}$$

B.
$$N$2.00009 \times 10^5$$

D.
$$N$20.0009 \times 10^{-5}$$

1.2 The solution of the linear equation $\frac{2y}{3} + y - 10 = 5$ is:

A.
$$y = 7$$

B.
$$y = -9$$
 C. $y = 9$

C.
$$v = 9$$

D.
$$y = -7$$

1.3 The Highest Common Factor of 270 and 1575 is:

[3]

1.4 The values of a, b and c in the Venn Diagram below are:

[3]

A.
$$a = 300, b = 100, c = 250$$

C.
$$a = 400 + b$$
, $b = 350 + b$, $c = a - c$

B.
$$a = 400, b = 90, c = 350$$

D.
$$a = 220, b = 180, c = 170$$

- 1.5 The sum to be invested for four years at 8% p.a. compounded semi-annually to amount to N\$ 3 500 at the end of the investment period is: [3]
 - A. N\$ 2 651.52
 - C. N\$ 2 572.60

- B. N\$ 4761.71
- D. N\$ 2 557.42

- 1.6 Simplify the expression $\frac{1}{xy} + xy \sqrt[3]{8}$, if x = 8 and y = 5. [3]
- A. -1 B. 1 C. $38\frac{1}{40}$ D. 78
- 1.7 Factorize the expression $2ab^2 abd 2bc + cd$. [3]
- A. (ab-c)(ab-c) B. (ab-c)(2b+d) C. (ab-c)(2b-d) D. (2b-d)(ab+c)
- 1.8 The simultaneous equations x y = 13 and x + y = -3 have the solution: [3]
- A. x = -5 and y = -8 B. x = 14 and y = 1
- C. x = 8 and y = -5 D. x = 5 and y = -8
- 1.9 Mr. Jonas invested \$8200 at the rate of 4.5 % p.a. It earned \$738 simple interest. The period of Investment was:
- A. 6 months B. 1 year C. 2 years D. 3 years
- 1.10 What is the sum of the series $\sum_{0}^{5} (n^3 + 3)$? [3]
- A. 128 B. 131 C. 240 D. 243

QUESTION 2 [15 Marks]

2.1 A farmer has were 10 more ca		20 cattle in his herd for 6 da	ys. How long will the fo	od last if there [3]
A. 9 days	B. 3 days	C. 4 days	s C). 12 days
2.2 Simplify the	expression $\frac{7^{x+1} \times 7^x}{7^{x-1} \times 7^x}$	x+2 x-2 ·		[3]
A. 7 ⁶	B. 7 ⁰	C. 7 ⁻²	2 [7^{4x+6}
2.3 A bottle of lemonade contains $1\frac{1}{2}$ littles. A glass holds $\frac{1}{8}$ littles . How many glasses can be filled from one bottle of lemonade? [3]				
A. $1\frac{5}{8}$	B. $\frac{3}{16}$	C. 12	С	0. 24
2.4 An integer <i>x</i>2.4.1 A prime nuA. 612.4.2 A multiple	mber. B. 63	≤ 70 . Write down a value o C. 7	f x which is	[2] [2]
A. 72	B. 81	C. 9	D. 63	
2.4.3 A square number.				
A. 100	В. 64	C. 5 ² D	. √16	[2]

SECTION B (Clearly show all your work)

QUESTION 3 [55 Marks]

3.1 Given the universal set $S = \{1,2,3,4,5,6,7\}$, set $A = \{1,3,4,5\}$ and set $B = \{1,3,5,6\}$, find:

$$3.1.1 A^c \cap B^c$$
 [3]

$$3.1.2 B^c \cup A$$
 [3]

3.1.3
$$n(B^c \cup A)$$
 [1]

3.1.3
$$(A \cap B)^c$$
 [3]

3.2 Expand and simplify the following expressions:

3.2.1
$$-2x^2y^2 + (xy - y)^2$$
 [2]

3.2.2
$$3x(x-3) + x(x-2)$$
 [3]

3.2.3
$$(x-2)^2 - (x+1)^2$$
 [4]

3.3 Solve the following inequality:
$$2x - 4 < \frac{1}{2}(40 - 4x)$$
. [4]

3.4 Solve the following equation using the quadratic formula:
$$3x^2 - 4x + 1 = 0$$
 [5]

3.5 Evaluate the logarithmic expression $\log_2 2 + 2\log_5 10 - \log_5 4$, without using a calculator. [5]

3.6 Given the formula,
$$S = \frac{n}{2}[2a_1 + (n-1)]d$$
 find the sum of the series $3+9+15+\cdots$ as far as the 50^{th} term.

3.7 Determine the values of a, b, c, and d in the following:

[6]

$$\begin{bmatrix} 2 & 3 \\ -1 & -1 \end{bmatrix} + a \begin{bmatrix} 2 & 1 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 8 & b \\ c & d \end{bmatrix}$$

3.8 Given the following Matrix
$$D = \begin{bmatrix} 3 & 0 \\ 1 & -2 \end{bmatrix}$$
 , find $-\frac{1}{2}D^{-1}$. [7]

3.9 Use Cramer's rule to solve the system of equations 2x + 3y = 5 and 5x - 2y = -16. [5]

END OF QUESTION PAPER