MATIIBIA UMIVERSITY
 OF SCIEחCE AחD TECHחOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

This question paper consists of 5 pages (including this cover page)

SECTION A (Multiple choice)

Write down the letter corresponding to the best option for each question in the answer booklet/sheet provided.

QUESTION 1 [30 Marks]

1.1 An amount of $N \$ 200009.00$ can be expressed in standard form as:
A. $N \$ 2.0 \times 10^{5}$
B. $N \$ 2.00009 \times 10^{5}$
C. $N \$ 2.00009 \times 10^{-5}$
D. $N \$ 20.0009 \times 10^{-5}$
1.2 The solution of the linear equation $\frac{2 y}{3}+y-10=5$ is:
A. $y=7$
B. $y=-9$
C. $y=9$
D. $y=-7$
1.3 The Highest Common Factor of 270 and 1575 is:
A. 45
B. 675
C. 9450
D. 15
1.4 The values of a, b and c in the Venn Diagram below are:

A. $a=300, b=100, c=250$
B. $a=400, b=90, c=350$
C. $a=400+b, b=350+b, c=a-c$
D. $a=220, b=180, c=170$
1.5 The sum to be invested for four years at 8% p.a. compounded semi-annually to amount to $N \$ 3500$ at the end of the investment period is:
A. $N \$ 2651.52$
B. $N \$ 4761.71$
C. $N \$ 2572.60$
D. $N \$ 2557.42$
1.6 Simplify the expression $\frac{1}{x y}+x y-\sqrt[3]{8}$, if $x=8$ and $y=5$.
A. -1
B. 1
C. $38 \frac{1}{40}$
D. 78
1.7 Factorize the expression $2 a b^{2}-a b d-2 b c+c d$.
A. $(a b-c)(a b-c)$
B. $(a b-c)(2 b+d)$
C. $(a b-c)(2 b-d)$
D. $(2 b-d)(a b+c)$
1.8 The simultaneous equations $x-y=13$ and $x+y=-3$ have the solution:
A. $x=-5$ and $y=-8$
B. $x=14$ and $y=1$
C. $x=8$ and $y=-5$
D. $x=5$ and $y=-8$
1.9 Mr. Jonas invested $\$ 8200$ at the rate of 4.5% p.a. It earned $\$ 738$ simple interest. The period of Investment was:
[3]
A. 6 months
B. 1 year
C. 2 years
D. 3 years
1.10 What is the sum of the series $\sum_{0}^{5}\left(n^{3}+3\right)$?
[3]
A. 128
B. 131
C. 240
D. 243

QUESTION 2 [15 Marks]

2.1 A farmer has enough food to feed 20 cattle in his herd for 6 days. How long will the food last if there were 10 more cattle in his herd?
A. 9 days
B. 3 days
C. 4 days
D. 12 days
2.2 Simplify the expression $\frac{7^{x+1} \times 7^{x+2}}{7^{x-1} \times 7^{x-2}}$.
A. 7^{6}
B. 7^{0}
C. 7^{-2}
D. $7^{4 x+6}$
2.3 A bottle of lemonade contains $1 \frac{1}{2}$ littles. A glass holds $\frac{1}{8}$ littles. How many glasses can be filled from one bottle of lemonade?
[3]
A. $1 \frac{5}{8}$
B. $\frac{3}{16}$
C. 12
D. 24
2.4 An integer x is such that $60 \leq x \leq 70$. Write down a value of x which is
2.4.1 A prime number.
A. 61
B. 63
C. 7
D. 70
2.4.2 A multiple of 9 .
A. 72
B. 81
C. 9
D. 63
2.4.3 A square number.
A. 100
B. 64
C. 5^{2}
D. $\sqrt{16}$
[2]

SECTION B (Clearly show all your work)

QUESTION 3 [55 Marks]

3.1 Given the universal set $S=\{1,2,3,4,5,6,7\}$, set $A=\{1,3,4,5\}$ and set $B=\{1,3,5,6\}$, find:
3.1.1 $A^{c} \cap B^{c}$
3.1.2 $B^{c} \cup A$
3.1.3 $n\left(B^{c} \cup A\right)$
3.1.3 $(A \cap B)^{c}$
3.2 Expand and simplify the following expressions:
3.2.1 $-2 x^{2} y^{2}+(x y-y)^{2}$
3.2.2 $3 x(x-3)+x(x-2)$
3.2.3 $(x-2)^{2}-(x+1)^{2}$
3.3 Solve the following inequality: $\quad 2 x-4<\frac{1}{2}(40-4 x)$.
3.4 Solve the following equation using the quadratic formula: $3 x^{2}-4 x+1=0$
3.5 Evaluate the logarithmic expression $\log _{2} 2+2 \log _{5} 10-\log _{5} 4$, without using a calculator. [5
3.6 Given the formula, $S=\frac{n}{2}\left[2 a_{1}+(n-1)\right] d$ find the sum of the series $3+9+15+\cdots$ as far as the $50^{\text {th }}$ term.
3.7 Determine the values of a, b, c, and d in the following:

$$
\left[\begin{array}{cc}
2 & 3 \\
-1 & -1
\end{array}\right]+a\left[\begin{array}{ll}
2 & 1 \\
0 & 4
\end{array}\right]=\left[\begin{array}{ll}
8 & b \\
c & d
\end{array}\right]
$$

3.8 Given the following Matrix $D=\left[\begin{array}{cc}3 & 0 \\ 1 & -2\end{array}\right]$, find $-\frac{1}{2} D^{-1}$.
3.9 Use Cramer's rule to solve the system of equations $2 x+3 y=5$ and $5 x-2 y=-16$.

